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EQUIVALENCE OF FORMULATIONS OF PROBLEMS WHEN MODELING FLOWS OF 

RHEOLOGICALLY COMPLEX MEDIA IN SCREW-SHAPED CHANNELS 

Yu. G. Nazmeev UDC 536.24 

The equivalence of two formulations of problems concerning the flow of a 
Newtonian liquid in a screw-shaped channel of an extruder - direct and inverse 
(rotation of jacket) - is analyzed. 

The problem of the motion of a liquid in the screw-shaped channel of an extrusion 
machine is traditionally formulated as an inverse problem. In this formulation the screw 
is stationary and the casing rotates, and the problem is ultimately reduced to flow in a 
rectangular channel whose upper wall moves at an angle with respect to the longitudinal 
axis [i-3]. 

A different, direct formulation of the problem is also possible [4]. In this formu- 
lation the screw rotates and the casing is stationary. The solution of the problem in this 
case is obtained with the help of spiral coordinates: introduced in a different manner. An 
example of such a formulation is given in [5]. 

Since the problem of accurate calculation of extruders (on which, by the way, there 
are many papers and monographs) is important, it is useful to study the relation between 
the two approaches to modeling. 

When analyzing the direct formulation it should first be noted that in both [4] and 
[5] nonorthogonal spiral coordinate systems are introduced. In [6] it is proved that the 
velocity vector is self-similar relative to the third (spiral) coordinate. We first show 
that it is impossible to introduce orthogonal coordinates in which the spiral displacement 
is transformed into a translation of the coordinate. 

Let S~:R ~ + R s be a spiral displacement by an angle a (if the axis of the screw is 
taken as the Oz axis and the Ox and Oy axes are chosen to be orthogonal to the Oz axis, then 
this transformation has the form: x § xcosa - ysin ~, y § xsin ~ + ycos ~, z ~ z + 7~). The 
trajectory of a point M is the curve {S~M}_=<~<~ - the spiral line. We shall show that in 
a neighborhood of the point M it is possible to introduce an orthogoanl coordinate system 
so that the trajectories of the points in a neighborhood of M would be coordinate lines. 

For this we show that there does not exist a surface orthogonal to the spiral lines 
in a neighborhood of the point M. This is an obvious consequence of Frobenius's theorem 
[7]. Here we shall give a direct proof. 

We write the parametric equations of the spiral line passing through the point (x ~ 
y0, z 0) as follows: 

x = x ~ cos  ~ - -  y ~ s in  a ,  x (0) = x ~ 

y = x  ~ 1 7 6  --~ <a<~, y ( O ) = y ~  

z = z ~ + ~ ,  z ( 0 )  = z ~ 
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The tangent vector to this line at the point (x ~ y0, z 0) is the vector {_y0, x 0, 7}. 
We assume that there exists in a neighborhood of the point M(x ~ y0, z 0) a twice-differ- 
ential function ~(x, y, z) such that the surfaces of constant level ~(x, y, z) = C are 
orthogonal to the spiral lines, i.e., (grad~) (x, y, z)ll{-~], x, 7} in a neighborhood of 
M. This means that 

o~ 

ox 

- - y  

for any (x, y, z) in a neighborhood of M. 

O~F x O~F 

Oy ? Oz 

Og Oz 
x y 

From h e r e  

OT g O~F 

Ox y Oz 

Differentiating the first equality in Eq. (2) with respect to x and the second with 

respect to y 02~F _ 1 01F -~ x OzT OB~Z 1 O~t r tj 02'~ 

OxOy ? Oz ? OxOz OyOx y Oz ? OgOz 

(1) 

(2) 

and then equating the mixed derivatives, we obtain 

2 8~  x 8 ~  y 8 ~  
? & 4 --+ . . . .  o. (3) 

? 8xSz y 8yOz 

D i f f e r e n t i a t i n g  Eq. (2 )  w i t h  r e s p e c t  t o  z ,  we o b t a i n  

8~W _ x 0 ~  82W y 82W 
8zSy ? 8z ~ ' 878x ? 8z 2 ( 4 )  

Substituting Eq. (4) into Eq. (3) we obtain 

2 O~ xg 02~ yx 02~ 
- - q  . . . .  O. 

y Oz ?2 Oz 2 ?z Oz 2 

Hence 8~ /8z  = 0 and ,  t h e r e f o r e  ( s e e  Eqs.  ( 1 ) ) ,  8 ~ / 8 y  = 0,  3~ /8x  = 0,  which  means t h a t  �9 i s  
constant and shows that the surfaces sought do not exist. 

We denote by D t the region occupied by the liquid at the time t; by K t the part of the 
region D t belonging to the jacket; by L t the part of the boundary D t belonging to the spiral; 

V (• t) the row vector of the flow velocity at the point V(X, t) at time t. Then the 
boundary-value problem of the flow of an elastoviscous liquid (for the example of the 
Reiner-Rivlin liquid) in the spiral channel of an extrusion machine can be written as 

I 1 9 T / -  + VV ? - -  VT P ~- VT [~1 (I~ (V)) B (V) + T2 (12 (~)  B 2 (V)] = 0, (5 

Sp(vV) = 0, xCD~, (6 

w i t h  t h e  s l i p  b o u n d a r y  c o n d i t i o n  a t  t h e  w a l l  

- -  ~ (I 2 (g)) V PFN~NKC (V)I K t , ( 7 

- -  ~ (Is (V - - V L  )) (V - -  VL) = PrN{NLC (V)IL t" ( 8 

Here B(V) = VV + (~)T; i2(~ ) = SpB~(~); NK(X ) is the unit inner vector normal to K t at the 

point ~ e Kt; NL(X) is the unit outer vector normal to L t at the point X e Lt; [L = ~ • 

is the rotational velocity of the point X e Lt; T designates transposition; prN1 is the 

orthogonal projection on a plane perpendicular to N; and 

C (V) : % G (?)) B (V) + ~2 (L (~)  m (V). 

Equation (5) of the system (5)-(8) is the equation of motion and Eq. (6) is the equation 
of continuity. The boundary conditions (7) and (8) are based on the assumption that on the 
channel walls the normal component of the relative velocity is equal to zero while the tan- 
gential component is proportional to the tangential component of the viscosity force. The 

slipping factor X depends, as usual [3], only on I2(~). 
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We write W = V - ~L and V = W + ~L- Orienting the Oz axis, as usual, along the axis 
of the screw and the Ox and Oy axes orthogonally to Oz, it is obvious that ~ = (0, 0, w), 

= w • X = (-'wy, wx, 0), 

v V L =  - - w  0 , v V L + ( V V L p =  0 0 0 . 
0 0 0 0 0 /  

Hence B(V L) = 0, Bg(~L ) = 0, 12(~ L) = SpB2(~L ) = 0, Sp (TVL) = 0. 
8 V L / a t  = ( 0 ,  0, 0 ) .  

It is also obvious that 

We set Px = -pwi/2 (x 2 + yi), p = pz + P2- Substituting V = W + VL into the system 
and taking into account the equalities obtained above, we have: 

<I (a~ + ~  ~V~-~VvV~+~'~ -v'P~- P --OU ' 

(9) 

- - v ~ P2  + v ~ [q~ (& (~)) B (~) + % (& (~')) B~ ( ~ ) l  - -  0 ,  

S v ( v W  ) : :  O, ~C Dr, ( 1 0 )  

- ~ (1.2 (W)) (W -6 I /L)= PrN~NK C (~')[Kt, ( 1 1 )  

- -  ). (I~ (W)) W = PrNL_--NL C (~)1 L,. ( 1 2 )  

Here we employed the facts that B(W + ~L) = B(W) + B(~ L) = B(W), Bi(W + VL) = Bi(w), 

Ii(W + VL) = Ii(W)" Hence C(W + V L) = C(W). 

We chose PI = -P ~2/2 ( x2 + yi) so that PVLVV L - V T PI = 0. Indeed, 

( 0 0 0) 

pVLV VL --- V T PI -- P ( - -  art/, WX, 0) - -  W 0 0 + (pwZx, 9Wzg, 0) = 
0 0 0 

= ( - -  9W~X, - -  9Wiy, O) + (pWiX, pWi!t, O) = (0, O, O) 

and  t h e n  c a n c e l l a t i o n s  w i l l  o c c u r  i n  Eq. ( 9 ) .  

Designating by R t the matrix of rotation over the time t with angular velocity w around 
the axis of the spiral, we obtain 

(x, y,  z) Rt = (x cos wt - -  y sin ~,t, x sin wt + V cos wt, z), 

/ coswt s inwt  0"1 1 
Rt = [ - -  sin wt coswt  0 

\ , 0 0 1 

It is obvious that R t is the aacobian of this transformation. 

We shall say that the motion is steady if 

~(~R,, t)=~(~, 0)R, (13) 

An example of steady motion is VL" For this reason, the motions ~ and W are simultaneously 
both steady or not. 

We rewrite the identity (13) characterizing steady motion: 

W(%, t) ---W(%R-t, 0)= Wo(%R-t) Rt. (14) 

Before substituting Eq. (14) into the system (9)-(12), we performed the following calcu- 
lations : 

(~ t) = tVo ( ~ - a  ~ ,=  ~ R_,~ (v Wo)(:~_,) R~ + tVo (x~-,) ~ ) ,  

0 ( ~ ( ~ ,  0=  --~ v,,,;(~, t) '~'[r: w~ 
8;{ 
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~ ' R  s R S =  = ( -~)~ (v Wo)f ({R_,)(  ,)~ (R-, (v Wo)(xR-,) R,){ z_a 

S,K 

B (W) (X, t) = V W (X, l) + (V WF (x, ~) = 

: R-t (V Wo) (zR-,) R, q- IR-, (V Wo) (zR-,) Rd ~ = R-t B (Wo) (ZR-,) R,. 

Here we employed the identities (AB) T = BTA T, (Rt)T = R- t, (R-t)T : R t. 

B 2 (W) (Z, t) = R-tB'- (Wo) (XR-0  Rt, 

since R_tR t = 12, and 

Hence 

& (w) (z, t) = h (Wo) (xR-O, 

since SpR_tAR t = SpARtR_ t = SpA. We also calculate the following: 

we_2_ J [V r t)]/ = ~ S Z  e [%B, + 92(B~)SJ(z, t ) =  

_x" g o 
~,~ (R-,X a-Tk- [% (G (wo))(y)(R_,8 (~o) R~)~ (v) + 

+ % (4 (~o)) (m (R_, m (VTo) R,)~ (y)jl;= ~ _ ,  = 

= ~ (R_,)~ (R-Of ~ Iv, (4 (Wo)) s (Wo) Jr m.> (h (~o))S= (w.,)!~-~(v) • 
i ,ms,q O/g ' - 

(R,)~ 6~ aa-2v IC(~o) o)l~ (Ra~ = Iv' c (< ) I  (TR_,)R,, X 
K,s,q g 

Here we used the identity 

'~'~ R s I, ~.(m,)f( -ai = ~f= i S<=5, 
, { o ,  K~s, 

which is equivalent to the identity R_tR t = 12, 

Since V L (X, t) = V L (xR_t)Rt, just as for W, we have (~L) • (X, t) = R-t(~VL)(XR_t)R t. 

Substituting Eq. (14) and all obtained expressions into the system (9)-(12), we obtain 

' (i5) 

-:- Wo (xR_,) (v Wo) (xR-,) R~ ~ VL (xR-O § wo)(xR_ ~) (v VL)(xR_:) & + 

+ VL (ZR-.,) (V Wo)(ZR-t) Rt ] -- V T P~ (Z-R-O R~ J- 

+ v �9 c (Wo) (xR-~) R, = 0, 

ss, (v wo) (xR-~) = o, ( 1 6 )  

.- X (i2 (Wo)) (Wo ' VL) (XR-,) Rt = prn# Nj<C (Ig,,)Rd,<,, ( i 7 )  

.... L (1.2 (Wo))Wo (XR-0 Re = Prx~NL C (Wo) RdLo. ( 1 8 )  

Here we employed the fact that NK(X, t) = NK(XR_t)Rt, NL( X, t) = NL(XR_t)R t. 

We denote xR_ t by y, right-multiply all equations by R_ t, and make the transformation 

in the first two terms of Eq. (15): 

~- d R- tR t )  /, p!.(-dz_~ R-,)(vWo)R,+Wo-~-Rt] = p L ( g R _ . , - E  

• R-tvWoR~+Wo-~-RtR-tR~=P g Re--~R-t,  vWoRe_Wo --dTR~R-~ R, , 
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d / coswt sinwt 0 
Rt - ~  R-t =- [ --sinwt coswt 0 

�9 0 0 1 
( - -  w sin wt --  w cos wt 0 '~ 

o o 

| 

WCOSo wt --wSinO mt // 

o_oo) 
w 0 0  ----A, 
0 0 0 ,  

d RtR-t wcos wt - - ~ s i n w t  s inwt  coswt 0 
dt 0 0 0 0 1 

0 i 
-AL (V) = - (wV 2, ~V~, Y'~) = (V~, V2, g3) [ - - w  

0 
__ ( O w O )  
v V L =  --w 0 0 = - - A .  

0 0 0 
Then Eq. (15) assumes the form 

Finally, 

0 w 

, 0 0 

0 = --  gA, 
0 

p 1~' A(V Wo) (V) - -  wz t,,~ ? --o ,J, . = Ugo (v) (v ~o) (v) yA (v ~o) (v) - 

- ~ 0  (v) 41 - (v T p~) (v) + v �9 c (Wo) (v) = o. 

after cancellations we obtain the following system of equations: 

- - A _ - A  T ' 

(19)  

o l - -  2Wo (v) A + V--o (V) (V Wo) (V)] - -  (V T P~) (V) + V T C (Wo) (V) = 0, ( 2 0 )  

S~,(VWo) = O, V~Do, ( 2 1 )  

- -  ;~. (12 (W--o)) (W-o + VL) --, PrN~ N---~ C (Wo)IKo, (22 ) 

- -  X (12 (Wo) )Wo  = p r~ , /  -NLC (W-o)ILo. (23) 

As one can see from the system of equations (20)-(23), Eq. (20) without the term 

-2pW0(Y)A would give a system of stationary equations of motion, which correspond to the 
inverse formulation (stationary screw and rotating casing). Equation (21), as we have al- 
ready mentioned, is the equation of continuity. The boundary conditions (22)-(23) are the 
conditions of slipping on the wall, and in addition the presence of the term +V L in the 
condition (22) means that the jacket rotates with angular velocity -w. 

From the physical standpoint the term -pW0(y)A is the Coriolis force, which appears 
on transforming from one formulation of the problem to another. It is possible that under 
some conditions this term can be neglected, as done in [i-3]. A quantitative estimate of 
the magnitude of the Coriolis force with respect to the viscosity and inertial forces can 
be obtained from the equations of motion by introducing some criterion, analogously to the 
introduction of the criterion Re. The quantity K = 2pwHb/ ~ obtained in this manner will 
characterize the ratio of the Coriolis to viscous forces. Here H and b are the height and 
width of the spiral channel. 

For some working media and, in particular, for a melt of polyethyleneterephthalate 
(lavsan) p = 1380 kg/m 3 and ~i0 = 9.3 Pa.sec (t o = 275~ and for real dimensions of a spi- 
ral channel with worm diameter D = 0.052 m and height H = 0.005 m with angular rotational 
velocity of the screw w = I/C the criterion K = 0.25, which indicates that the Coriolis 
forces must be taken into account. 

Thus the presence of the term -2pW0(y)A in Eq. (20) shows that the situation "rotating 
screw" - the direct formulation - is not equivalent to the situation "rotating casing" - 
the inverse formulation. 

NOTATION 

Here x, y, and z are running coordinates; ~(x, y, z) is the surface of constant level; 
D t is the region occupied by the liquid at the time t; K t is the part of the boundary D t 
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belonging to the casing of the screw; L t is the part of the boundary D t belonging to the screw; 

~(x, y, z) is a point in the space; V( X, t) is the flow velocity vector at the point X at 

the time t; ~I(I2), ~2(I2) are the material functions of a Reiner-Rivlin liquid and charac- 
terize the effective and transverse viscosity; B(V) is the first White-Metzner cinematic 

tensor (strain rate tensor); P is the pressure; I2(V) is the second invariant of the strain 

rate tensor; p is a constant of the liquid; NK(X) is the unit inner normal vector to K t at 

the point X ~ Dt; NL(X) is the unit outer normal vector to L t at the point X e Lt; PrN• is 

the orthogonal projection on a surface perpendicular to N; w is the angular rotational velo- 
city of the screw; T designates transposition; and R t is the matrix of rotation over a time t 
with angular velocity w around the axis of the spiral. 
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SMALL-ASPECT TOMOGRAPHY OF HEATED FLOWS BASED ON IR-RADIOMETRIC 

MEASUREMENTS 

E. I. Vitkin and S. L. Shuralev UDC 535.2:536.3 

An algorithm for performing tomographic analysis of nonuniform heated gas flows 
is proposed. The algorithm employs infrared radiometric measurements and takes 
into account the real line structure of the vibrational-rotational bands of 
gases, including reabsorption. 

The radiation emitted from a flow of heated gases contains rich information about the 
internal thermodynamic properties of the flow. It is natural to develop optical methods 
of diagnostics of such flows, especially since they have a number of significant advantages, 
including the fact that the diagnostics is performed remotely and does not disturb the 
medium under study. Maximum intensity of equilibrium thermal emission at a temperature of 
the order of i000 K lies in the infrared region of the spectrum. Vibrational-rotational 
bands of many molecular gases lie in the same region. For this reason, in order to deter- 
mine the temperature and concentration of the emitting components it is best to employ mea- 
surements in the IR region of the spectrum. 

Methods for performing diagnostics of a uniform layer, which are based on measurements 
of the absorption coefficient and brightness of the radiation emitted by the layer in dif- 
ferent spectral regions, are described in a number of works [1-3]. However, they are not 
applicable for diagnostics of flows which have significant spatial nonuniformity. The 
methods of computer tomography are widely employed to investigate nonuniform spatial struc- 
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